Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 942
Filtrar
1.
Front Bioeng Biotechnol ; 12: 1343579, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665813

RESUMO

Polyhydroxyalkanoates (PHAs) are biodegradable polymers that can be produced from lignocellulosic biomass by microorganisms. Cheap and readily available raw material, such as corn stover waste, has the potential to lessen the cost of PHA synthesis. In this research study, corn stover is pretreated with NaOH under conditions optimized for high cellulose and low lignin with central composite design (CCD) followed by characterization using Fourier-transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), and scanning electron microscopy (SEM). Design expert software performed further optimization of alkali pretreated corn stover for high total reducing sugar (TRS) enhancement using CCD using response surface methodology (RSM). The optimized condition by RSM produced a TRS yield of 707.19 mg/g. Fermentation using corn stover hydrolysate by Pseudomonas putida MTCC 2475 gave mcl-PHA detected through gas c hromatography - t andem m ass s pectrometry (GC-MS/MS) and characterization of the PHA film by differential scanning calorimetry (DSC), FTIR, and nuclear magnetic resonance (NMR). Thus, this research paper focuses on using agriculture (stubble) waste as an alternative feedstock for PHA production.

2.
Front Nutr ; 11: 1370975, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606017

RESUMO

With the development of animal husbandry, the shortage of animal feedstuffs has become serious. Dietary fiber plays a crucial role in regulating animal health and production performance. The aim of this study was to investigate the effects of three kinds of corn straw-saccharification fibers (CSSF) such as high-fiber and low-saccharification (HFLS), medium-fiber and medium-saccharification (MFMS), low-fiber and high-saccharification (LFHS) CSSF on the reproductive performance of sows. Thirty-two primiparous Yorkshire sows were randomly assigned to 4 groups, 8 sows for each group. Group A was the basal diet as the control group; groups B - D were added with 6% HFLSCSSF, 6% MFMSCSSF and 6% LFHSCSSF to replace some parts of corn meal and wheat bran in the basal diet, respectively. The experimental period was from day 85 of gestation to the end of lactation (day 25 post-farrowing). The results showed that 6% LFHSCSSF addition significantly increased number of total born (alive) piglets, litter weight at birth (p < 0.05), whereas three kinds of CSSF significantly decreased backfat thickness of sows during gestation (p < 0.001), compared with the control group. Furthermore, CSSF improved the digestibility of crude protein, ether extract and fiber for sows. In addition, the levels of total cholesterol, total triglycerides, and high-density lipoprotein cholesterol in serum of sows were decreased by different kinds of CSSF. Further analysis revealed that CSSF regulated lipid metabolism through adjusting the serum metabolites such as 4-pyridoxic acid, phosphatidyl cholines and L-tyrosine. In summary, CSSF addition to the diets of sows during late gestation and lactation regulated lipid metabolism and improved reproductive performance of sows. This study provided a theoretical basis for the application of corn straw in sow diets.

3.
Biotechnol Biofuels Bioprod ; 17(1): 39, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461298

RESUMO

BACKGROUND: The polysaccharides in lignocellulosic biomass hold potential for production of biofuels and biochemicals. However, achieving efficient conversion of this resource into fermentable sugars faces challenges, especially when operating at industrially relevant high solid loadings. While it is clear that combining classical hydrolytic enzymes and lytic polysaccharide monooxygenases (LPMOs) is necessary to achieve high saccharification yields, exactly how these enzymes synergize at high solid loadings remains unclear. RESULTS: An LPMO-poor cellulase cocktail, Celluclast 1.5 L, was spiked with one or both of two fungal LPMOs from Thermothielavioides terrestris and Thermoascus aurantiacus, TtAA9E and TaAA9A, respectively, to assess their impact on cellulose saccharification efficiency at high dry matter loading, using Avicel and steam-exploded wheat straw as substrates. The results demonstrate that LPMOs can mitigate the reduction in saccharification efficiency associated with high dry matter contents. The positive effect of LPMO inclusion depends on the type of feedstock and the type of LPMO and increases with the increasing dry matter content and reaction time. Furthermore, our results show that chelating free copper, which may leak out of the active site of inactivated LPMOs during saccharification, with EDTA prevents side reactions with in situ generated H2O2 and the reductant (ascorbic acid). CONCLUSIONS: This study shows that sustaining LPMO activity is vital for efficient cellulose solubilization at high substrate loadings. LPMO cleavage of cellulose at high dry matter loadings results in new chain ends and thus increased water accessibility leading to decrystallization of the substrate, all factors making the substrate more accessible to cellulase action. Additionally, this work highlights the importance of preventing LPMO inactivation and its potential detrimental impact on all enzymes in the reaction.

4.
Braz J Microbiol ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472698

RESUMO

Developing efficient microbiological methods to convert polysaccharide-rich materials into fermentable sugars, particularly monosaccharides, is vital for advancing the bioeconomy and producing renewable chemicals and energy sources. This study focused on optimizing the production conditions of an enzyme cocktail from Aspergillus niger ATCC 9642 using solid-state fermentation (SSF) and assessing its effectiveness in saccharifying mango peels through a simple, rapid, and efficient one-step process. A rotatable central composite design was employed to determine optimal conditions of moisture, time, and pH for enzyme production in SSF medium. The optimized enzyme cocktail exhibited cellulase activity (CMCase) at 6.28 U/g, filter paper activity (FPase) at 3.29 U/g, and pectinase activity at 117.02 U/g. These optimal activities were achieved with an SSF duration of 81 h, pH of 4.66, and a moisture content of 59%. The optimized enzyme cocktail effectively saccharified the mango peels without the need for chemical agents. The maximum saccharification yield reached approximately 81%, indicating efficient conversion of mango peels into sugars. The enzyme cocktail displayed consistent thermal stability within the tested temperature range of 30-60°C. Notably, the highest sugar release occurred within 36 h, with glucose, arabinose, galactose, and xylose being the primary monosaccharides released during saccharification. This study highlights the potential application of Aspergillus niger ATCC 9642 and SSF for enzymatic production, offering a simple and high-performance process for monosaccharide production. The optimized enzyme cocktail obtained through solid-state fermentation demonstrated efficient saccharification of mango peels, suggesting its suitability for industrial-scale applications.

5.
Int J Biol Macromol ; 264(Pt 2): 130701, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458283

RESUMO

Increasing the substrate concentration can effectively reduce energy consumption and result in more economic benefits in the industrial production of maltose, but this process remarkably increases the viscosity, which has a negative effect on saccharification. To improve saccharification efficiency, pullulanase is usually employed. In the conventional process of maltose production, pullulanase is added at the same time with ß-amylase or later, but this process seems inefficient when the substrate concentration is high. Herein, a novel method was introduced to enhance the maltose yield under high substrate concentration. The results indicated that the pullulanase pretreatment of highly concentrated maltodextrin solution for 2 h greatly affects the final conversion rate of ß-amylase-catalyzed saccharification. The maltose yield reached 80.95 %, which is 11.8 % above the control value. Further examination confirmed that pullulanase pretreatment decreased the number of branch points of maltodextrin and resulted in a high content of oligosaccharides. These linear chains were suitable for ß-amylase-catalyzed saccharification to produce maltose. This research offers a new effective and green strategy for starch sugar production.


Assuntos
Polissacarídeos , beta-Amilase , Maltose , Glicosídeo Hidrolases , Amido/química , Catálise
6.
Int J Biol Macromol ; 264(Pt 2): 130702, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471607

RESUMO

Pretreatment is a key process restricting the development of biorefinery. This work developed a pretreatment process based on an ethanolamine/acetamide alkaline deep eutectic solvent (ADES). Under microwave assistance, pure ADES pretreatment at 100 °C for 10 min achieved 95.9 % delignification and 95.2 % hemicellulose removal of bamboo shoot shells (BSS). Further, when 75 % water was added to pure DES to prepare hydrated DES (75 %-HADES), impressive delignification (93.2 %), hemicellulose removal (92.2 %) and cellulose recovery (94.8 %) were still achieved. The cellulose digestibility of the 75 %-HADES pretreated solid residue was significantly increased from 12.2 % (the control) to 91.2 %. Meanwhile, the structural features of hemicellulose and lignin macromolecules fractionated by 75 %-HADES pretreatment were well preserved, offering opportunities for downstream utilization. Overall, this work proposes an effective pretreatment strategy with the potential to enable the utilization of all major components of bamboo shoot shells.


Assuntos
Celulose , Solventes Eutéticos Profundos , Solventes/química , Biomassa , Hidrólise , Lignina/química
7.
Bioresour Technol ; 399: 130560, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460563

RESUMO

The potential of hydrolytic enzyme cocktail obtained from designed bacterial consortium WSh-1 comprising Bacillus subtilis CRN 16, Paenibacillus dendritiformis CRN 18, Niallia circulans CRN 24, Serratia marscens CRN 29, and Streptomyces sp. CRN 30, was investigated for maximum saccharification. Activity was further enhanced to 1.01 U/ml from 0.82 U/ml by supplementing growth medium with biotin and cellobiose as a cofactor and inducer. Through kinetic analysis, the enzyme cocktail showed a high wheat straw affinity with Michaelis-Menten constant (Km) of 0.68 µmol/L and a deconstruction rate (Vmax) of 4.5 U/ml/min. The statistical optimization of critical parameters increased saccharification to 89 %. The optimized process in a 5-L lab-scale bioreactor yielded 501 mg/g of reducing sugar from NaOH-pretreated wheat straw. Lastly, genomic insights revealed unique abundant oligosaccharide deconstruction enzymes with the most diverse CAZyme profile. The consortium-mediated enzyme cocktails offer broader versatility with efficiency for the economical and sustainable valorization of lignocellulosic waste.


Assuntos
Consórcios Microbianos , Triticum , Cinética , Carboidratos , Bebidas Alcoólicas , Hidrólise
8.
Bioresour Technol ; 399: 130635, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552860

RESUMO

Deep eutectic solvents (DESs) offer a potential opportunity in biomass utilization industries. This work emphasized the impact of hydrogen bond donors (HBD) and acceptors (HBA) on deconstruction and valorization of rice straw. Acidity, alkyl chain length, hydrogen bonding ability and functional groups of HBD and HBA appeared to be important factors affecting the fractionated pulps and lignins, which further influenced ethanol fermentation. Among the candidate DESs, lactic acid/guanidine hydrochloride (LGH) was proved to be the most suitable one due to the excellent delignification and xylan removal. For the downstream fermentation process, 0.47 g g-1 of bioethanol with 0.55 g/L h-1 of productivity can be obtained from the LGH pulp's hydrolysate. Mass balance showed 302.8 g bioethanol and 119.0 g technical lignin can be co-generated from 1 kg dried rice straw. This "green" valorization strategy offers a promising scheme in biorefinery of lignocelluloses.


Assuntos
Lignina , Oryza , Lignina/química , Solventes Eutéticos Profundos , Solventes/química , Biomassa , Hidrólise
9.
J Environ Manage ; 354: 120327, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38359627

RESUMO

Sweet sorghum, as a seasonal energy crop, is rich in cellulose and hemicellulose that can be converted into biofuels. This work aims at investigating the effects of synergistic regulation of Pichia anomala and cellulase on ensiling quality and microbial community of sweet sorghum silages as a storage and pretreatment method. Furthermore, the combined pretreatment effects of ensiling and ball milling on sweet sorghum were evaluated by microstructure change and enzymatic hydrolysis. Based on membership function analysis, the combination of P. anomala and cellulase (PA + CE) significantly improved the silage quality by preserving organic components and promoting fermentation characteristics. The bioaugmented ensiling with PA + CE restructured the bacterial community by facilitating Lactobacillus and inhibiting undesired microorganisms by killer activity of P. anomala. The combined bioaugmented ensiling pretreatment with ball milling significantly increased the enzymatic hydrolysis efficiency (EHE) to 71%, accompanied by the increased specific surface area and decreased pore size/crystallinity of sweet sorghum. Moreover, the EHE after combined pretreatment was increased by 1.37 times compared with raw material. Hence, the combined pretreatment was demonstrated as a novel strategy to effectively enhance enzymatic hydrolysis of sweet sorghum.


Assuntos
Celulase , Saccharomycetales , Sorghum , Hidrólise , Sorghum/química , Sorghum/metabolismo , Silagem/análise , Silagem/microbiologia , Celulase/metabolismo , Fermentação
10.
Front Bioeng Biotechnol ; 12: 1344964, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38344290

RESUMO

Bamboo is considered a renewable energy bioresource for solving the energy crisis and climate change. Dendrocalamus branddisii (DB) was first subjected to sulfomethylation reaction at 95°C for 3 h, followed by Fenton oxidation pretreatment at 22°C for 24 h. The synergistic effect of combined pretreatment dramatically improved enzymatic digestibility efficiency, with maximum yield of glucose and ethanol content of 71.11% and 16.47 g/L, respectively, increased by 4.7 and 6.11 time comparing with the single Fenton oxidation pretreatment. It was found that the hydrophobicity of substrate, content of surface lignin, degree of polymerization, and specific surface area have significant effects on the increase of enzymatic saccharification efficiency. It also revealed that sulfomethylation pre-extraction can improve the hydrophilicity of lignin, leading to the lignin dissolution, which was beneficial for subsequent Fenton pretreatment of bamboo biomass. This work provides some reference for Fenton oxidation pretreatment of bamboo biomass, which can not only promote the utilization of bamboo in southwest China, but also enhances the Fenton reaction in the bamboo biorefinery.

11.
Bioresour Technol ; 395: 130325, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228219

RESUMO

Herein, three enzymes (cellulase, ß-glucosidase, and pectinase) with synergistic effects were co-immobilized on the Eudragit L-100, and the recovery of co-immobilized enzymes from solid substrates were achieved through the reversible and soluble property of the carrier. The optimization of enzyme ratio overcomed the problem of inappropriate enzyme activity ratio caused by different immobilization efficiencies among enzymes during the preparation process of co-immobilized enzymes. The co-immobilized enzymes were utilized to catalytically hydrolyze cellulose from corn straw into glucose, achieving a cellulose conversion rate of 74.45% under conditions optimized for their enzymatic characteristics and hydrolytic reaction conditions. As a result of the reversibility and solubility of the carrier, the co-immobilized enzymes were recovered from the solid substrate after five cycles, retaining 54.67% of the enzyme activity. The aim of this study is to investigate the potential of co-immobilizing multiple enzymes onto the Eudragit L-100 carrier for the synergistic degradation of straw cellulose.


Assuntos
Celulase , Celulose , Celulose/metabolismo , Zea mays/metabolismo , Enzimas Imobilizadas/metabolismo , Ácidos Polimetacrílicos , Celulase/metabolismo , Hidrólise
12.
Bioresour Technol ; 395: 130352, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272142

RESUMO

The productive separation and conversion of corn straw offers significant prospects for the economic viability of biorefineries centered on straw resources. In this work, a graded utilization method was proposed to produce xylo-oligosaccharides (XOS), ethanol and lignin from corn straw by nicotinic acid (NA) hydrolysis and water/pentanol pretreatment. A XOS yield of 52.6 % was achieved under optimized conditions of 100 mM NA, 170 °C and 30 min. The solid residue was directly treated with water/pentanol, achieving a lignin removal rate of 79.7 %, and the total XOS yield was improved to 62.6 %. The lignin recovered from pentanol had a high purity of 97.6 %, with high phenolic OH content. Simultaneous saccharification and fermentation of final residue resulted in an ethanol yield of 92.0 %, which yielded 55.3 g/L ethanol. Thus, NA hydrolysis and water/pentanol pretreatment provided an efficient, environmentally friendly approach to fractionate corn straw for the co-production of XOS, ethanol, and lignin.


Assuntos
Glucuronatos , Lignina , Niacina , Lignina/química , Zea mays , Etanol , Pentanóis , Hidrólise , Oligossacarídeos , Fermentação , Água
13.
Bioresour Technol ; 395: 130398, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286168

RESUMO

The efficient utilization of biomass resources has gained widespread attention in current research. This study focused on the conversion of hemicellulose into xylo-oligosaccharides and furfural, as well as enhanced cellulose saccharification and lignin removal from residual biomass. The solid acid catalyst AT-Sn-MMT was prepared by sulfonation and tin ion loading of montmorillonite K-10. In a mixture of deep eutectic solvent and γ-valerolactone (3:7, v/v), AT-Sn-MMT was used to catalyze Phyllostachys edulis (PE) at 160 °C for 20 min, obtaining a furfural yield of 85.7 % and 1.5 g/L xylo-oligosaccharides. The delignification of pretreated PE was 59.5 %, reaching an accessibility of 221.3 g dye/g material. While the enzymatic saccharification efficiency was increased to 73.1 %. This work drew on the merits of solid acid catalysts and mixed solvent systems, and this constructed pretreatment method could be efficiently applied for co-production of reducing sugars, xylooligosaccharide and furfural, realizing the efficient valorization of PE.


Assuntos
Furaldeído , Glucuronatos , Açúcares , Solventes , Oligossacarídeos , Lignina , Poaceae , Biomassa , Hidrólise
14.
J Sci Food Agric ; 104(7): 4145-4156, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38294322

RESUMO

BACKGROUND: Wheat is one of the key ingredients used to make Chinese liquor, and its saccharification power and protein content directly affect the quality of the liquor. In pursuit of a non-destructive assessment of wheat components and the optimization of raw material proportions in liquor, this study introduces a precise predictive model that integrates hyperspectral imaging (HSI) with stacked ensemble learning (SEL). RESULTS: This study extracted hyperspectral information from 14 different varieties of wheat and employed various algorithms for preprocessing. It was observed that multiplicative scatter correction (MSC) emerged as the most effective spectral preprocessing method. The feature wavelengths were extracted from the preprocessed spectral data using three different feature extraction methods. Then, single models (support vector machine (SVM), backpropagation neural network (BPNN), random forest (RF), and gradient boosting tree (XGBoost)) and a SEL model were developed to compare the prediction accuracies of the SEL model and the single models based on the full-band spectral data and the characteristic wavelengths. The findings indicate that the MSC-competitive adaptive reweighted sampling-SEL model demonstrated the highest prediction accuracy, with Rp 2 (test set-determined coefficient) values of 0.9308 and 0.9939 for predicting the saccharification power and protein content and root mean square error of the test set values of 0.0081 U and 0.0116 g kg-1, respectively. CONCLUSION: The predictive model established in this study, integrating HSI and SEL models, accurately detected wheat saccharification power and protein content. This validation underscores the practical potential of the SEL model and holds significant importance for non-destructive component analysis of raw materials used in liquor. © 2024 Society of Chemical Industry.


Assuntos
Imageamento Hiperespectral , Triticum , Algoritmos , Redes Neurais de Computação , Máquina de Vetores de Suporte , Análise dos Mínimos Quadrados
15.
J Agric Food Chem ; 72(5): 2657-2666, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38288662

RESUMO

Rice straw (RS), an agricultural residue rich in carbohydrates, has substantial potential for bioethanol production. However, the presence of lignin impedes access to these carbohydrates, hindering efficient carbohydrate-to-bioethanol conversion. Here, we expressed versatile peroxidase (VP), a lignin-degrading enzyme, in Pichia pastoris and used it to delignify RS at 30 °C using a membrane bioreactor that continuously discarded the degraded lignin. Klason lignin analysis revealed that VP-treatment led to 35% delignification of RS. We then investigated the delignified RS by SEC, FTIR, and SEM. The results revealed the changes of RS caused by VP-mediated delignification. Additionally, we compared the saccharification and fermentation yields between RSs treated with and without VP, VP-RS, and Ctrl-RS, respectively. This examination unveiled an improvement in glucose and bioethanol production, VP-RS exhibiting up to 1.5-fold and 1.4-fold production, respectively. These findings underscore the potential of VP for delignifying RS and enhancing bioethanol production through an eco-friendly approach.


Assuntos
Lignina , Oryza , Lignina/química , Oryza/química , Peroxidase/metabolismo , Carboidratos/química , Peroxidases/metabolismo , Fermentação , Hidrólise
16.
Waste Manag ; 175: 204-214, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38218091

RESUMO

This work studied the optimization of enzymatic saccharification of Agave tequilana bagasse (ATB) pretreated with the low-cost protic ionic liquid (PIL) ethanolamine acetate ([EOA][OAc]) using the highly available and cost-effective mixture of the enzymatic cocktails Celluclast 1.5L-Viscozyme L. Response surface methodology (RSM) was employed to maximize the sugars concentration and yield. The RSM optimization conditions of the enzymatic saccharification of pretreated ATB that achieved the maximum reducing sugars (RS) concentration were: 11.50 % w/v solids loading, 4.26 pH with 0.76 and 1.86 mg protein/mL buffer of Viscozyme L and Celluclast 1.5L, respectively. Similarly, the conditions that maximize the sugar yield (SY) were solids loading of 5.62 % w/v, and 4.51 pH as well as 1.07 and 2.03 mg protein/mL buffer of Viscozyme L and Celluclast 1.5L, respectively. Saccharification performance of the first-generation and low-cost enzyme mixture Celluclast 1.5L-Viscozyme L was compared with that reached by a second-generation and higher-cost CTec2, where Celluclast 1.5L-Viscozyme L achieved 60.86 ± 2.66 % y 79.25 ± 3.34 % of the sugars released by CTec2 at the same hydrolysis time (12 h) for the sugar concentration and yield models, respectively. These results are encouraging since they positively contribute to cost reduction and availability issues, which are key parameters to consider when thinking about scaling-up the process.


Assuntos
Agave , Celulose , Líquidos Iônicos , Análise Custo-Benefício , Carboidratos , Hidrólise , Açúcares
17.
Enzyme Microb Technol ; 174: 110393, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219439

RESUMO

The robustness of microbial consortia isolated from compost habitat encompasses the complementary metabolism that aids in consolidated bioprocessing (CBP) of lignocellulosic biomass (LCB) by division of labor across the symbionts. Composting of organic waste is deemed to be an efficient way of carbon recycling, where the syntrophic microbial population exerts a concerted action of lignin and polysaccharide (hemicellulose and cellulose) component of plant biomass. The potential of this interrelated microorganism could be enhanced through adaptive laboratory evolution (ALE) with LCB for its desired functional capabilities. Therefore, in this study, microbial symbionts derived from organic compost was enriched on saw dust (SD) (woody biomass), aloe vera leaf rind (AVLR) (agro-industrial waste) and commercial filter paper (FP) (pure cellulose) through ALE under different conditions. Later, the efficacy of enriched consortium (EC) on consolidated pretreatment and bio-saccharification was determined based on substrate degradation, endo-enzymes profiling and fermentable sugar yield. Among the treatment sets, AVLR biomass treated with EC-5 has resulted in the higher degradation rate of lignin (47.01 ± 0.66%, w/w) and polysaccharides (45.87 ± 1.82%, w/w) with a total sugar yield of about 60.01 ± 4.24 mg/g. In addition, the extent of structural disintegration of substrate after EC-treatment was clearly deciphered by FTIR and XRD analysis. And the factors of Pearson correlation matrix reinforces the potency of EC-5 by exhibiting a strong positive correlation between AVLR degradation and the sugar release. Thus, a consortium based CBP could promote the feasibility of establishing a sustainable second generation biorefinery framework.


Assuntos
Compostagem , Lignina , Lignina/metabolismo , Consórcios Microbianos , Celulose/química , Açúcares , Biomassa , Hidrólise
18.
Microb Cell Fact ; 23(1): 11, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183135

RESUMO

BACKGROUND: The demand for low-cost cellulolytic enzyme synthesis is rising in the enzyme market. This work aims to produce cellulase by utilizing various agricultural wastes and investigating the use of enzyme in saccharification and textile industries. RESULTS: Solid state fermentation (SSF) was applied to produce industrial enzymes, particularly cellulase, through utilizing Molokhia (Corchorus olitorius) stems by Aspergillus awamori MK788209 isolate. Two stages of statistical factorial designs Plackett-Burman (PB) and Central Composite Design (CCD) were applied to enhance the A. awamori MK788209 cellulase production from Molokhia stems (MS). The fold increase of enzyme production by PB followed by CCD was 2.51 and 4.86, respectively. Additionally, the A. awamori MK788209 culture filtrate was highly effective in saccharifying various agricultural wastes, particularly pea peels (PP) (yielding 98.33 mg reducing sugar/ml), due to its richness in cellulase, laccase, xylanase, pectinase, and amylase. By optimizing the three main variables; pea peel weight, culture filtrate volume added, and saccharification time by CCD, the sugar recovery from PP was enhanced, leading to a 3.44-fold increase in reducing sugar recovery (338 mg reducing sugar /ml). Furthermore, the A. awamori MK788209 culture filtrate showed high efficacy in textile applications, enhancing the roughness, weight loss, white index, and printing capability of treated cotton fabrics. CONCLUSIONS: A. Awamori MK788209 produced cellulase which was effective in PP saccharification. The enzyme was also capable of enhancing cotton fabric properties.


Assuntos
Celulase , Ervilhas , Têxteis , Açúcares
19.
Biotechnol Biofuels Bioprod ; 17(1): 5, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218877

RESUMO

BACKGROUND: Secondary cell wall holds considerable potential as it has gained immense momentum to replace the lignocellulosic feedstock into fuels. Lignin one of the components of secondary cell wall tightly holds the polysaccharides thereby enhancing the recalcitrance and complexity in the biomass. Laccases (LAC) and peroxidases (PRX) are the major phenyl-oxidases playing key functions during the polymerization of monolignols into lignin. Yet, the functions of laccase and peroxidases gene families remained largely unknown. Hence, the objective of this conducted study is to understand the role of specific LAC and PRX in Populus wood formation and to further investigate how the altered Lac and Prx expression affects biomass recalcitrance and plant growth. This study of heterologous expression of Arabidopsis Lac and Prx genes was conducted in poplar to avoid any otherwise occurring co-suppression mechanism during the homologous overexpression of highly expressed native genes. In the pursuit of optimizing lignocellulosic biomass for biofuel production, the present study focuses on harnessing the enzymatic potential of Arabidopsis thaliana Laccase2, Laccase4, and Peroxidase52 through heterologous expression. RESULTS: We overexpressed selected Arabidopsis laccase2 (AtLac2), laccase4 (AtLac4), and peroxidase52 (AtPrx52) genes, based on their high transcript expression respective to the differentiating xylem tissues in the stem, in hybrid poplar (cv. 717) expressed under the developing xylem tissue-specific promoter, DX15 characterized the transgenic populus for the investigation of growth phenotypes and recalcitrance efficiency. Bioinformatics analyses conducted on AtLac2 and AtLac4 and AtPrx52, revealed the evolutionary relationship between the laccase gene and peroxidase gene homologs, respectively. Transgenic poplar plant lines overexpressing the AtLac2 gene (AtLac2-OE) showed an increase in plant height without a change in biomass yield as compared to the controls; whereas, AtLac4-OE and AtPrx52-OE transgenic lines did not show any such observable growth phenotypes compared to their respective controls. The changes in the levels of lignin content and S/G ratios in the transgenic poplar resulted in a significant increase in the saccharification efficiency as compared to the control plants. CONCLUSIONS: Overall, saccharification efficiency was increased by 35-50%, 21-42%, and 8-39% in AtLac2-OE, AtLac4-OE, and AtPrx52-OE transgenic poplar lines, respectively, as compared to their controls. Moreover, the bioengineered plants maintained normal growth and development, underscoring the feasibility of this approach for biomass improvement without compromising overall plant fitness. This study also sheds light on the potential of exploiting regulatory elements of DX15 to drive targeted expression of lignin-modifying enzymes, thereby providing a promising avenue for tailoring biomass for improved biofuel production. These findings contribute to the growing body of knowledge in synthetic biology and plant biotechnology, offering a sustainable solution to address the challenges associated with lignocellulosic biomass recalcitrance.

20.
Prep Biochem Biotechnol ; 54(1): 19-38, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37149786

RESUMO

Fifty percent of the overall operational expenses of biorefineries are incurred during enzymatic-saccharification processes. Cellulases have a global-market value of $1621 USD. Dearth of conventional lignocelluloses have led to the exploration of their waste stream-based, unconventional sources. Native fungus-employing cellulase-production batches fail to yield sustained enzyme titers. It could be attributed to variations in the enzyme-production broth's quasi-dilatant behavior, its fluid and flow properties; heat and oxygen transfer regimes; kinetics of fungal growth; and nutrient utilization. The current investigation presents one of the first-time usages of a substrate mixture, majorly comprising disposed COVID-19 personal protective-equipment (PPE). To devise a sustainable and scalable cellulase-production process, various variable-regulated, continuous-culture auxostats were performed. The glucose concentration-maintaining auxostat recorded consistent endoglucanase titers throughout its feeding-cum-harvest cycles; furthermore, it enhanced oxygen transfer, heat transfer co-efficient, and mass transfer co-efficient by 91.5, 36, and 77%, respectively. Substrate-characterization revealed that an unintended, autoclave-based organsolv pretreatment caused unanticipated increases in endoglucanase titers. The cumulative lab-scale cellulase-production cost was found to be $16.3. The proposed approach is economical, and it offers a pollution-free waste management process, thereby generating carbon credits.


Assuntos
COVID-19 , Celulase , Celulases , Humanos , Celulase/química , COVID-19/prevenção & controle , Celulases/química , Temperatura Alta , Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...